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A method is developed for the design of exactly uniform high-density vectorial
distributions inside the 1/48th symmetry-irreducible trihedral angle of highest cubic
symmetry. The first application led to a particular 489-vector distribution in the basic
solid angle which extends, by permutations, to 23,472 uniformly-distributed vectors
in the full 47 steradians. This density (N = 489) meets a criterion of about one part in
10° set for the accuracy requirement of three-dimensional integration of functions in
crystal lattice dynamics and in elastic wave theory. The dependence of the accuracy of
numerical calculations on vector density is determined by comparison with exact
integrals of certain octahedral functions. It is found to depend significantly on the
three-dimensional anisotropy of the surfaces of these functions. A ten-decimal table
of the direction cosines of the 489-vector distribution is supplied as an appendix.

I. INTRODUCTION

The theory of lattice vibrations of a crystal solid leads to the prescription of a
very large number rN, of eigenfrequencies of the form v,(q;). Herep = 1,2,3,...,r
(r = 3 X number of atoms per lattice unit cell) and i = 1,..., Ny (~Avagadro
number) points q; in the reciprocal lattice space of the Brillouin zone [1]. In
principle, in the harmonic approximation, all of the thermodynamic properties
of a crystal are calculable from the Helmholtz free energy in the form

3r No

F=+3 % (bhv,@) + kT In{l — exp[—hv,(q)/kT]}),

where @ is the static lattice potential energy. In practice, it is impossible to perform
such a summation over 102 points. However, since the q; are so densely distributed
and functions defining »(q) are uniform, one can use the continuum representation
in which one replaces the sum for F by an integral weighted by a frequency distri-
bution function G(v) (or vibration spectrum or phonon spectrum). Now F becomes
in practice an approximate F. The accuracy of one of the theoretical thermo-
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60 OVERTON, JR. AND SCHUCH

dynamic quantities derivable from F now hinges on the accuracy with which G(v)
has been determined.

Even the computation of G(v) versus v used to be a formidable task. After
prodigious labor one was able to obtain accuracies of only a few percent. (See early
works cited in Ref. [1], for example). With modern computers, accuracies of parts
in 108 are possible. One need not set a goal this high. Actually, the computational
accuracy needs only to be one or two orders better than the accuracy of modern
experimental measurements. At the present time, six-figure accuracy is quite a
reasonable goal and is very much better than the accuracies of a few percent
obtainable only a few years ago.

The root-sampling method [1] for calculating a phonon spectrum G(v) versus
vfor 0 < v < », (v, = model maximum) involves solving the dynamical matrix

| Dys(@) — 852 | (1.1)

at a large number of selected points q’s in the Brillouin zone. The vibrational
eigenfrequencies v,(q)’s so obtained are sorted into histogram intervals. The
details of the method used then determines whether one obtains a good or a
poor approximation to the correct curve of G(v) versus v. In (1.1) D,; (q) is a
sine—cosine series of terms over shells s of atoms surrounding one chosen as
origin [2]. The arguments are shwaX(q. , 9, , 4.) Where h is a proper integer and a
is the crystal lattice constant. The coefficients in D,;(q) are the generalized-force
interatomic force constants (AFC’s) %, B;*[2].

Once G(v) versus v has been obtained, the theoretical thermodynamic properties
of a crystal can be calculated easily. A comparison between theory and thermo-
dynamic experimental data then provides one method of testing the validity of the
choice of the set {«;% B;°} of AFC’s. Unfortunately, the test itself is seldom valid
unless G(v) versus v is known with reasable accuracy.

One of the sensitive tests of a phonon model is that of comparing the theoretical
and experimental specific heats at low temperatures because here, the specific heat is
changing most rapidly as 7°. However, the dominant frequencies in the low T
range are the low »(q) which correspond to the small values of q near the origin
of the Brillouin zone. Thus, reliable model testing requires very accurate G(v)
versus v in this low-v range.

It is just in the low q range that the root-sampling method (i.e., roots v, (g
evaluated on some cubic lattice of points) gives the least accurate G(v) data. Even
when one selects the order of 108 points (q’s) in say 1/8th the Brillouin zone, the
G(v) obtained by conventional root-sampling still may be too crude for valid
model testing at low temperatures.

A more reliable method, especially for the low-v range, has been termed the
vector-interpolation method (see Section II below). This method is capable of
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giving G(v) with five- to eight-decimal accuracy (at least for small v) with only
about 50,000 points in 1/48th the zone.

One of the earliest suggestions of the use of the vector method in lattice-dynamics
applications seems to be due to Houston [3]. This idea has been extended by de
Launay [4] and used in the preparation of tables of Debye @, functions for cubic
crystals; de Launay used a 69-vector distribution which is hardly different from
the 70-vector distribution of Fig. la. The latter was used in the 1950’s in some

\l/ [t10] [rro] ‘1’

Fic. 1. A typical 1/48th symmetry-irreducible trihedral solid angle segment of the sphere.
Spherical coordinates r, 8, ¢ are defined with respect to Cartesian axes x, y, z which we also
identify with cubic crystallographic axes [100], [010] and [001], respectively. Fig. (1a): subdivision
in 70 unequal surface elements. Fig. (1b): Uniform subdivision of 489 exactly equal elements.

early phonon spectra calculations [5, 6]. Even the 70-vector distribution of Fig. 1a
does not provide the accuracy required for testing phonon models except in the
unlikely case of nearly spherical surfaces of constant »(q). Moreover, the solid
angle elements dw’s surrounding the vectors of Fig. 1a are unequal; obviously,
this necessitates a separate weighting factor for each vector.

One purpose of this paper is to-outline the procedure for designing an N-vector
distribution of fairly large N for which all vectors have the same weighting factor.
This procedure has been applied in designing a distribution with N = 489 [7]
within the 1/48th symmetry-irreducible trihedral angle of highest cubic symmetry.
This segment represents the irreducible spatial subset of octahedral Group @ [8].
We have found that the N-489 distribution satisfies the five- to ten-decimal accuracy
criterion for the long wave limit of lattice dynamics. Accordingly, it seems worth-
while to include here these previously unpublished tables defining this distribution.
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In Section II, we arrive at design criteria for an N-vector distribution via the
consideration of the phonon spectrum problem and that of averaging over the
elastic wave velocities of a crystal to determine its Debye 6, . But, a vector
distribution defined by the set of subsets of direction cosines (p, ¢, r) has much
broader applicability. By permuting (p, g, ), one extends the set from the 1/48th,
trihedral angle of Fig. 1a or 1b to the six such segments defining the positive octant.
Then, by sign changes, the basic set can be further extended to the full 4 steradians.
Thus, the results of Table II can be applied to give accurate three-dimensional
spatial integration of many types of functions.

An exactly uniform distribution of the 1/48th trihedral angle of Fig. 1b simply
means first dividing the surface area so subtended on the unit sphere into N equal
areas. While this seems simple it has nevertheless proven to be a bit tedious. Thus,
it seems worthwhile to outline in Section III the straightforward procedures for
doing this subdivision. The second step is to find the direction cosines p, g, r of
the vector passing through the centroid of each elemental area. This is done in

Fic. 2. An anisotropic surface of constant frequency vy inside the Brillouin zone of a face-
centered cubic lattice which just touches the center L of the hexagonal zone face. The surface
becomes sharply conical at L which becomes a saddle point in three dimensions such that nearby
surfaces with » > vy are hyperbolic while those for v < vy are parabolic. Three-dimensional
integration to determine G(v) is very accurate except near L. A very large increase in G(») occurs
close to L as described by Eq. (5.16). Since there is a singularity in dG/dv at v = vy, often with
unknown coefficient G, , the error in G(vy) becomes large and unknown. The square-root singular-
ity occurs for all phonon branches for various »;’s at X (square face centers), at L, and, in some
cases, on symmetry planes.
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Section IV. This then completes the design of a uniform N-vector distribution for
any N estimated to be large enough to satisfy the accuracy requirements. Our
particular results for N = 489 are then given in Table II.

Another purpose of this paper is to look at methods of estimating the accuracy
of integrations via vectorial methods. One of the methods in Section V is to compare
the closed form integrals of certain octahedral functions (the 0@, ,,) with corre-
sponding values obtained numerically with an N-489 distribution. Still another
method is to do a least-squares polynomial fitting via an independent computer
code on the calculated G(v) at a number (~50) of v values of the low-v range.
Here one treats the theoretical G(v) points just like experimental data. Theory
requires fitting a polynomial of the form G(v) = 3., av®*; v < vy; vy = v of
lowest Van Hove singularity [1]. When variances of the polynomial fit are of the
order of 10-1°, one feels assured that G(v) has the desired five(or better)-decimal
accuracy. Standard deviations of the a, for some recent phonon calculations [9]
turn out to be of the order of 10-5 to 10~%. However, when v > v, the errors
increase considerably for reasons discussed in Section V.

Spherical surfaces of constant v(q) are rarely found in lattice dynamics. Only a
very few crystalline solids seem to be almost isotropic in the long wave elastic
limit. A typical anisotropic surface of constant frequency is shown in Fig. 2. The
causes of error in calculated G(v) are considered in Section V and discussed in
terms of the anisotropy of the surfaces. We compare in Section VI various inte-
gration methods which use interpolations to increase effective point density.

II. DEsSIGN CONSIDERATIONS

The formal expression for phonon density of states is
GO) = VDL [ 1 Vs | ds @.1)
» »

where G(v) dv is the number of crystal vibrations with v between » and v 4 v,
N, = Avagadro’s number, V, = Brillouin zone volume in q space, and p is the
index of phonon wave polarization.

For cubic crystals, one can approximate (2.1) by summing over a vector distri-
bution such as that in Fig. 1a or 1b according to

g) = @8Ny/V2) 3. Y. 42(vy) | dgdv o, Ao, - (2.2)

o k=1

When all N elemental solid angle elements are equal, as in Fig. 1b and Table 11,
Aw, can be factored in front of the sum. Both v,(q) and | dg/dv,, |4 are evaluated

581/14/1-5
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along the «th vector by solving (1.1) at several points on ¢, ; one then uses inverse
interpolation to get q(v,) and the derivative along q, .

Houston [3] has shown that (2.2) approaches (2.1) with zero error as N in
(2.2) — oo. This procedure, called the vector-interpolation method [5, 9], does not
imply interpolation between v or ¢ values on adjacent vectors.

The solutions of (1.1) can be computed via ordinary machine programs (double
precision probably unnecessary) with 10- to 14-decimal accuracy. There is harly
any loss of this accuracy in the inverse interpolations which lead to the summand
of (2.2). Consequently, virtually all of the error in g(v) arises because of the
vector distribution. We discover in Section V that this error is relatively large for
highly anisotropic surfaces (see Fig. 2). It becomes negligible (order of parts in 108)
for nearly spherical surfaces.

A choice of N of the order of 500 inside the 1/48th segment of Fig. 1b will
provide the desired S5- to 8-decimal accuracy in integrations. This fact was deter-
mined in Ref. [7] by a purely geometrical analysis of the errors in evaluating the
summand of (2.2). In Ref. [7] we considered the intersection of a surface with
an elemental tetrahedral cone of Fig. 1b. Since this analysis corroborates the
results of Section V below, we will not repeat it here. The choice of a specific N
close to 500 is then arrived at arbitrarily as discussed in Section I11.

In the long-wave low temperature limit, the evaluation of (2.2) becomes equiv-
alent to integration over an elastic wave surface. Hence, the problem becomes
equivalent to the determination of Debye @, . This is discussed further in Section V.

III. DESIGN OF A VECTOR DISTRIBUTION

In Ref. {7] and in Fig. la an elemental tetrahedron defining a 4w was enclosed
by right and left side planes which satisfied the condition ¢ = constant. The upper
and lower sides were curves, however, since they satisfied the condition 8 = const.
This condition on 8 could not be extended to elements 60-70 of Fig. 1a because the
upper limit 6 was defined by a boundary plane of the 1/48 trihedral angle, i.e.,
the [010]-[101] plane of Figs. la and 1b. (Here r, 6, ¢ are spherical coordinates
for x, y, z frame of Fig. 1b). This imposed the condition 8 = cot~!(cos ¢) as an
upper limit of integration. Moreover, the distribution was not uniform because all
of the elemental 4w, were not equal.

In designing our new higher-density vector distribution, it is convenient to retain
the condition ¢ = const for the side planes of each elemental tetrahedron.
However, for a uniform distribution, the mathematics becomes tractable only if
we use planes for the upper and lower sides instead of the curved sides used in the
earlier work. It is convenient to select many planes which intersect in the y- or
[010]-axis of Fig. la or b. This imposes a condition similar to cot § = cos ¢; in
fact, the new condition we seek is cot § = (const) cos ¢.
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This section sets down the procedure by which the side planes of each elemental
tetrahedron can be so selected that all tetrahedra subtend equal angles and com-
pletely fill up the 1/48 basic trihedral angle. The vectors which pass through the
centroids of these elemental tetrahedra will then be uniformly distributed.

Figure 1b shows the cuts of a large number of planes on the unit sphere, all of
which have a common intercept in the y-axis. Since any pair forms a wedge, we
name them wedge planes and label them i with i = 0, 1, 2,..., L. Let i = 0 be the
y-z plane and i = L be the [010]-[101] plane of the figures. Any point P(x, y, z)
on the ith plane must satisfy x = a;z for all x, z. Thus the case ¢ = 0 (or y = 0)
defines the line x° = a;z° as the intercept of the ith plane with the x—z plane of
Fig. 1b. Thus for all points on the ith plane, we must have

a; = tan 4,°, @G.1D

where 8,2 = (¢ = 0). In View of (3.1), any vector lying in the ith plane will
have its 6 related to its ¢ according to

0 = cot~Y(cos ¢/a;). (3.2

The i = 0, 1,..., L wedge planes cut out L strips on the unit sphere within the
1/48 trihedral angle in the manner shown in Fig. 1b. The edges of these strips are
not quite parallel but diverge slightly between the planes ¢ = 0 (x-z plane)
and ¢ = 45° (z-[110] plane). We label a strip £ with £ = 1, 2, 3,..., L and ultimately
require that each strip shall contain exactly n, units of elemental solid angle
Aw = (4n/48N), where n, and N are integers to be determined by the aribrary
procedure below. The area on a unit sphere between any two planes i, i + 1, or the
area of the /th strip, is given in closed form by

w/4 8;,1(8)

Aoy = Ar = fo dé L ., sn6db, (3.3)
= fo " d¢ %—~cos [cot‘1 (—g;:—:ﬁ)] + cos [cot—1 (—CEE—)] s, (3.4

w/4

= [sin~1 ((———Sl—l}-i——) — sin—1 (———EE—?S———)] (3.5)

T+ a7 T+ )"

[

We choose, as a criterion for the determination of n, and N, a span which may
give the 1 part in 10° accuracy indicated in Section II. This means choosing
40 ~ 1.5°, 4¢ ~ 1.5°. Thus, for a preliminary calculation, we arbitrarily put
46° = 1.5°, and this automatically sets a preliminary value of L at 30. The area
of these 30 strips can be computed readily by desk calculator; of course, they cannot
all contain an integral number of dw’s. It then becomes necessary to readjust from
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46° = 1.5° to 46° ~ 1.5° in order to guarantee n, dw in each strip, with n, =
integer. The next step is to pick d¢ ~ 1.5° again in order to satisfy the accuracy
criterion. But in the application of this step we have to realize that the width of
an elemental tetrahedron (i.¢., the value of 4¢) will vary in any strip since the width
of each strip diverges slightly. Thus we must single out one of the strips in which
to do an initial fitting of n, . Although the full procedure in this section will apply
to any arbitrary accuracy criterion or (469, 4A¢) or N, it is well illustrated, as
follows, by our particular final choices. We have singled out the strip £ = L (in
Fig. 1b this is the strip containing elements « = 462 and « = 489) and find that
one can closely fit n, = 28 elementary dw’s into this strip with N chosen to be
489. This n; also gives A¢ ~ 1.5° for element 462 of Fig. 1b. What we wanted was
some value of N near 500, and N = 489 fills this bill nicely. However, any other N
in this vicinity would have been satisfactory also. We fixed upon N = 489 because
with n, = 28 (i.e., Ady ~ 1.5°) only a very minor adjustment in 46° = 6,° — 6% ,
from 1.5° was required. The success of this adjustment is seen in Appendix Table 1.
The next step is then to examine the strip £ = (L — 1). Note that 46° = 63 _, — 69 ,
must be readjusted from its preliminary value in order to guarantee n;,_; dw in
strip £ = (L — 1) with n,_,; exactly integral, where Aw is now precisely fixed at
(47/48)(1/489) as a result of the adjustments in strip £ = L. We found n,_; could
be chosen at 28 or 27 and still not cause 46° to differ greatly from 1.5°. We settled
upon n;_, = 28 after looking at strips £ = L — 2,¢ = L — 3, etc. Continuing this
fitting process and recalculating the 67, , 6,° for each strip, we then were able to
fit exactly n, dw’s into these strips and thereby completely and uniformly fill
up the 1/48 trihedral angle. However, for strip /=1 (or 8°% = 8,° = 0;
6?,, = 0,° = 2.6524%, see Table I) the readjustments required a final filling of the
strip with two elemental trihedral angles (elements « = 1 and « = 2 of Fig. 1b).
This resulted in one less strip (29 instead of 30) than was initially assumed in the
preliminary design and thus necessitated a relabeling of the ¢’s. The final results
of ﬁttlng 489 Aw s into 29 str1ps all of which satlsfy (69,1 — 0 ) = 1.5° within
AN

way are not sufﬁc1ently accurate for the u1t1mate purpose of computmg the gbK_l
and ¢, of the individual 4w, and the subsequent centroid coordinates. This is
because there is an inadvertent loss of four to six decimals in these calculations,
so that we might obtain direction cosines of centroid vectors which were only
accurate to two or three significant figures. Consequently, after n, and N have been
fixed by the empirical procedure outlined above, it becomes necessary to recal-
culate the cos 8,°. Fortunately, cos ,° can now be expressed in closed form and
evaluated almost exactly. Of course, this was not possible in the preliminary
formulation. The procedure for this precise step follows.
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Since the n, are now fixed, let us consider the total area of all Aw’s from elements
« = 1, x = 2,..., up through and including the final element in the ¢th strip. In
Fig. 1b this is only the area on the unit sphere contained between the x—z plane,
the z-[110] plane, and the plane labeled (i + 1). Note that the upper limit 69,, of
integration in (3.5) occurs in the form cos 87,; = (1 + ;)22 in view of (3.1).
Note also that we are following the convention where i denotes the lower 6.°
value of a strip, i + 1 the upper so that the #th strip corresponds to 7 + 1. Thus,
the area of all elements, as discussed above, becomes,
41
Area(0,i + 1) = W = Y mdw 3.6)
=1
where dw is now precisely fixed at (4/48N). This area is also given exactly by a
revised form of (3.5) in which a; = 0(~8,2° = 0), e.g.,

W = n/4 — sin"Y(cos 62,,/v/2). 3.7
The inverse of (3.7) is

cos 0., = V2sin(w/4 — W),

= cos Wy — sin W,. 3.8)

Since it is easy to calculate W, to something like 14-decimal accuracy, cos 6},
can be readily calculated to 14 decimals directly.

We now consider the further subdivision of a particular strip, say ¢, into exactly »,
smaller surface elements. Referring to Figs. la and b we let ¢,_, denote the plane
¢ = const for the left edge of an elemental tetrahedron, and ¢, denote the right
edge. The area of intersection of a single tetrahedron with the unit sphere must be
Aw, and this is seen to be equivalent to (3.5) if the upper and lower limits ¢ = 0
and ¢ = =/4 are replaced by ¢ = ¢,_; and ¢ = ¢, , respectively. However, this
replacement gives an equation with the left side, 4w, known exactly, but with two
unknowns, ¢,_; and ¢, in the right side. This is reduced to an equation with only
one unknown by holding the Iower limit of integration at 0 while the upper limit
is set at ¢, . The left side in this case is simply the appropriate integer, say sy(«),
times Aw. Thus, this particular revision of (3.5) takes the form

s¢(k) Adw = sin(cos 8 sin ¢,) — sin~"(cos 87,, sin ¢,). 3.9

With the aid of an antitrigonometric identity we express (3.9) in the more
convenient form

sin[sy(x) dw] (3.10)
= sin ¢, [cos 8.°(1 — cos® 8, sin® $)1/2 — cos 0,,,(1 — cos® 6; sin® $,)1/2].
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We are faced at this point with the numerical task of evaluating sin ¢, in (3.10)
when all the other quantities are known almost exactly, say to 14 decimals. The
sin ¢, were found for our 489-element subdivision by use of a Newton—-Raphson
interpolation program. The calculations could be readily checked since, when
s)(x) = ny , ¢ = m/4 and sin ¢, = 1/v/2. (Note the definition of », in Table 1.)
This checked to only 12 decimals, thereby showing that the calculation (3.10)
had resulted in a loss of absolute accuracy of two decimals. This is, of course,
the consequence of taking the difference in (3.10) of two numbers which are equal to
within about 1 percent.

It is not really necessary to retain or print out these sin ¢, (we actually did this
anyway to check the accuracy of the calculation) since they are used subsequently
only to calculate the direction cosines of the centroid vectors by the method of
Section 4.

V. CALCULATION OF CENTROIDS

The wedge planes and the planes of constant ¢ cutting out the elemental areas on a
unit sphere also define solid angle cones. The solid angles are tetrahedral angles
for elements « = 3 to 489, and trihedral angles for elements 1 and 2 (note Fig. 1b).
We may close these solid angles and form solid figures by any sphere of radius a.

Let g, be the centroid vector of the solid figure defined by the «th tetrahedral
(or trihedral) cone. The components of ¢, are given by well-known formulas which
we express in terms of the problem at hand as follows.

%= Vi [ [ [ (psin 6 cos $)(p? sin 6 dp df dh)

4.1)
vy [ Y a0 db]
= (a*/4V)) LH cos ¢ Uo‘(a sin i &,
where 0,(¢) is defined by (3.2) and, ultimately (3.8).
i 8;41(a)
5o 4 . TN
V. = (@*/4V) L . sin ¢ ; fe © sin? § dﬁ} dd, 4.2)
b 8442(e)
= 4 .
z, — @4V, L § L L Simfcosd deg ds. (4.3)
The volume of the «th solid figure is
b [ A0e11(®)
Vo= @) [ 3 f T sin 9 deg d, (4.4)
b1 V0;(0)
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which integrates to (a?/3) times the same result expressed by (3.5) when its limits
7/4 and 0 are replaced by ¢, and ¢,_, , respectively. Thus,
V. = (@%3) dw for all «. 4.5)

Equations (4.1), (4.2), and (4.3) also integrate directly to give, respectively,

T : — ai+1 e _ a;
%, = (3a/84w) [sm ¢ tan™1 (————COS 3 ) sin ¢ tan™1 ( o5 3 )
1 { @ tand
S a+ ai ) tan ( (1 + a2 )

1 _ a;tan ¢
-+ T+ aPP tan—! ( E D )]

dx

R (4.6)

b1

x

¥. = (3a/84w) [—cos ¢ tan1 (—Eacf{;) + cos ¢ tan~! ( co‘;¢¢ )]

? (4‘7)

L

= _ i _ a;tan ¢
Z. = (3a/84w) [————————(1 T a2 )i tan—1 (—‘—(1 T a?+1)1/2)

tan™! ( (laj,_ti:z;i/z )] R

The individual parts within the square brackets of (4.6), (4.7), and (4.8) can be
calculated to 14-decimal accuracy, but the sin ¢ and cos ¢ going into these parts
have only 12-decimal accuracy, as discussed earlier. Note that (4.6) involves four
sets of differences; (4.7), two sets; and (4.8), two sets. The numbers in these dif-
ferences are nearly equal (they differ by only 1 percent), and this results in a further
loss of absolute accuracy. Thus the X, , Z, and the direction cosines which we shall
ultimately compute from them, can have only about 10-decimal accuracy, even
though our computational accuracy is 14 decimals.

Of course, 10-decimal accuracy is just what we wanted in the beginning, since
this is all that we shall ever really need in applications. It is interesting to note,
however, that we would not have achieved this desired absolute accuracy if we
had not required at least 14-decimal accuracy in all steps leading up to these last
evaluations.

The desired end product is Table II of the Appendix, e.g., a table of the direction
cosines of the 489 vectors passing through the centroids. They are defined by

(4.8)

(1 F a2

b1

P = X/pe = sin G, cos @, , 4.9)
g4 = J/p, = sin b, sind,, (4.10)
re = Ek/px = COS @, , (411)

pe = (X + §& + 222 (4.12)
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V. ACCURACY OF SPATIAL INTEGRATION

The cubic invariant polynomials mentioned in the introduction are functions
of the direction cosines p(6, ¢), ¢(6, ¢), r(0, ¢). These functions are well suited to
provide estimates of the accuracy of integration in terms of the anisotropy of the
surfaces. Four of these functions are [8]:

055 = p%q% + q°r? + rip? (5.1)
Os,2.0 = PPq°r?, 5.2)
0,=1-—20,, (5.3
Oro="0,5—30,,,. 5.4

A list of the first 22 polynomials is given in Ref. [8]. One also finds in Ref. [8] three-
dimensional sketches of the above four functions which provide an immediate
appraisal of the nature of the surface anisotropy.

If one regards the value of 0, ; (0, ¢) as the length r(8, ¢) of a vector from the
origin to the surface, then the exact total surface area is given by integration in
closed form. One has

27 T
Ausm= [ d$[ Ons.n(0, $)sin 0 db. (5.5)
0 0

The surface areas of the functions (5.1) to (5.4) turn out to be

Ay, = 47/5 = 2.513274...,
Ay 50 = 47105 = 0.1196797...,
Ay = 127)5 = 1.539822...,
Ay, = 24135 = 2.154235...,

(5.6)

respectively.

Using the p, g, r of the 489-vector distribution of Table 2, one has nine-to ten-
decimal accuracy for calculated values of the functions (5.1)-(5.4). Using the
13-decimal format deck of p, ¢, r, one has about 12-decimal accuracy on any given
vector, Consequently, any error in integration is largely determined by the
coarseness of the subdivision, rather than by numerical errors in the 0, ;,,,(0, $).
The numerical estimates of the surface areas are obtained by computer evaluation of

489

En,l.m = 484w Z &n,l.m(ex‘ﬁx) (57)
k=1
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The results obtained via the N = 489 distribution of Table II are:

E, , = 2.513366 (high by 3.6 parts in 10%),
E; 55 = 0.1196624 (low by 14.4 parts in 105),
E, = 7.539639 (low by 2.4 parts in 105),
E, , = 2.154378 (high by 6.6 parts in 10°).

(5.8)

One gauge of the surface anisotropy of the 0, ; ., obtains by recording the length
of a vector from the origin to the surface in the [001] (z-axis), [101] (face-diagonal),
and [111] (body diagonal) directions. This length is simply the value of 0, , ,, in
the direction of interest. One finds,

Oy, = 0;1/4;1/3,
Oz,5.2 = 0;0; 1/27,
0, = 1;1/2; 1/3,
0,, = 0;1/4;2/9,

(5.9)

in the [001], [101], and [111] directions, respectively.

Comparing (5.9) with numerical results (5.8) leads one to at least a qualitative
relationship between surface anisotropy and error of numerical integration. The
very coarse 70-vector subdivision [S] of Fig. 1a has errors of several percent for
surfaces like @, , , and less than one percent for 0, , and 0, , . For 0, , the error is
less than one part in 10%; thus even crude subdivisions can give satisfactory results
(for certain purposes) if the anisotropy is known not to be too great.

Elastic wave surfaces in crystals have anisotropies more closely like that of 0, .
See (5.9). One seldom finds anything as anisotropic as 0, , . Generally, the longi-
tudinal and high-shear wave velocity surfaces are less-anisotropic than @, while the
low-shear mode is about like 0, .

In some high-transition-temperature superconductors, the high 7, is attributed
to the existence of soft phonon modes, i.e., a very small velocity of the low-shear
mode in a certain crystallographic direction (say the [110]-direction in cubic
metals). In such a case, the surface of constant » becomes quite anisotropic so that
errors of integration by our vector technique become larger. We can expect
errors perhaps as large as 6 parts in 105, such as those for @, ; and 0,,, in (5.8).

In computing tables of Debye 0, functions, one goes to the long-wave limit of
Eq. (2.2). Restricting ourselves to the case of all cubic crystals, one puts (2.2)
into the expression for the specific heat [4], then goes over to the long wave limit.
In the low v power series for G(») = Y. ,a,v*", only the coefficient @, remains
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significant in the long-wave, low-v, low-temperature limit. One finds a result [4, 10]
in terms of the cubic crystal elastic wave velocities according to

Op = (7}:“)( 497]:710/ )1/2 (13 i 3 )1/3 ( cf )1/3 G(S, 7), (5.10)
G, m) = 3'1‘8—:7?%2 S [+ UGS, S S B AN

p=1 k=1

where ¢y; , €155 C44 are the elastic constants and the dimensionless parameters are

S = (11 — ca)/(cr2 + Ca)s (5.12)
7 = (C1a + Cas)/Cas (5.13)

and V = crystal molar volume.
There are only three elastic modes in cubics so p = 1, 2, 3 and « extends over
all N vectors of the distribution in the 1/48th trihedral angle. The function

U= 1w, 0., 4 — 1] (5.14)

is a reduced form of the pth root of the elastic secular equation (v,, = velocity of
pth mode). It turns out that U = U(S, 0., ¢,) = U[S, 0, 4(x), O, ,4(x)], ie., it
is a root of the cubic

US— U2S + US*— 1) O, — (S5 — 35 +2) Gy, = 0, (5.15)

However, 1 + U is seldom as anisotropic as either @, , or 0, , , except perhaps
in the soft-phonon-mode case already discussed.

We have evaluated [10] six-decimal tables of the function G(s, 7) characterized by
0.04 < S <751 (45 = 0.03) and 1.00 < 7 < 4.80 (4+ = 0.05). This range
covers virtually all of the values for existing experimental data on the elastic
constants c¢;;, €2, Cy Of cubic crystals. By interpolation, we evaluate G(S, 7)
rapidly and with about six-decimal accuracy. Thus, one can obtain from the tables
of Ref. [10] an accurate 8, for essentially all of the known sets of cubic crystal
elastic constants. The question then is, just how accurate is it ?

We get an immediate answer by comparing with data on phonon spectra in
Ref. [9]. There, the standard deviation of the quadratic coefficient @, (which
determines 6,) obtained from least squares adjustment of G(v) versus v was
7 x 10-8. This was for the case of copper. The much simpler calculations via
(5.15) are expected to be more accurate but, as already pointed out, the roughness
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of the vector distribution is the main factor in determining accuracy. However,
from this result we can claim 7 parts in 105, at least, as the accuracy of ) calcu-
lations via the tables of Ref. [10] when the (S, 7) range is more isotropic than that
for copper.

Compare now with the anisotropy indicated by (5.9). The Debye velocity surface
obtained from the roots of (5.15) is not, for any of the p roots, as anisotropic as
the functions of Eq. (5.9). The worst case would be like ¢, and should be off by
only about 2.4 parts in 10%. Consequently, for the location of (S, 7) in the 8, tables
of Ref. [10], the accuracy is at least as good as 7 parts in 108, For the more-isotropic
cases of these tables, the accuracy is much better. But, the top edge of these tables
corresponds to (S, 7) values at which the roots of (5.15) become complex. There,
the anisotropy is also large, but seldom as bad as @, , in (5.9). The worst conceivable
case is the most anisotropic case of @, , ,, the error of which, in (5.8), is 1.4 parts
in 104

The surface of constant frequency v = v, shown in Fig. 2 touches the centers of
hexagonal faces of the fcc Brillouin zone. At the point of contact dv/éq vanishes
in all directions. Thus, one has a saddle point in three dimensions. It has been shown
[1] that G(v) has a square root singularity, i.e.

G) = G, — Gy(vy® — vV v < vy, (5.16)

so that (6G/ov)|,,,, is infinite. This is the so-called Van Hove singularity [1 and
references cited therein].

The value of G, can be estimated with better than one percent accuracy by the
use of the method of (2.2) when v > vy, . When v < vy by a few percent the
accuracy of G(v) is of order of a part in 10% to 10® as already discussed. Use of
these results in combination with G, and (5.16) permits an estimate of G(vy) the
error of which is about the same as the error of G, . Often we obtain G, with 0.1
percent accuracy but the error is sometimes as large as one percent. Thus, an
important feature of the vector method is this capability of estimating the error
with some degree of confidence.

VI. COMPARISON WITH OTHER METHODS

A further discussion of certain sources of errors in calculations of G(v) by our
method is presented here rather than in Section V above. This is done here in order
to make a more-meaningful comparison with the method of Gilat and
Raubenheimer [12] (GR method), the QUAD scheme of Mueller, Garland, Cohen
and Bennemann [13] (MGCB), and a Monte Carlo method of Brust [14]. While
many other authors (see Refs. cited in [7, 12, 13, 14]) have devised integration
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TABLE IIA (continued)

79

k P Ak Iy K Py A T
135 435364 63310 29616 45992 -88725 38465 206 «45338 81792 .23132 25797 «86077 23411
136 .35120 83166 .31658 53880 -88115 06173 207 .45105 28410 225143 58943 -85634 76663
137 434858 71405 .33700 54130 .87459 38240 208 +44850 93244 .27154 88179 +85152 84055
209 .%4575 41011 .29166 13317 +84630 78334
210 <44278 32564 .31177 34205 +84067 84892
138 +39452 37167 .01019 48516 491882 %2017 211 443959 24582 .33188 50718 .83463 21164
139 +39435 92378 .03058 45268 491844 712648 212 +43617 69208 .35199 62770 .82B15 95950
140 +39401 00779 .05097 41181 .91768 29174 213 .43253 13631 +37210 70308 .82125 08615
141 .39353 58315 .07136 35702 +91653 52095 214 42864 99608 .39221 73322 .81389 48184
142 «39287 58670 .09175 28287 .91500 27081 215 ©42452 62910 441232 71841 .80607 92278
143 +39204 96228 .11214 18401 .91308 34889
144 «39105 54024 -13253 05528 .91077 51231
145 .38989 25669 .15291 89168 +90807 46617 216 .4B894 99197 .01045 90707 .87224 91524
146 .38855 94269 .17330 68842 .90497 86161 217 .4B873 56034 203137 71951 .87186 75253
147 .38705 42528 .19369 44099 .90148 29344 218 .48830 66915 .05229 52688 .87110 37710
148 .38537 50620 .21408 14516 .89758 29731 219 .48766 26236 .07321 32584 .86995 68865
149 .3835]1 96056 . 23446 79701 .89327 34649 220 48680 25547 .09413 11311 .86842 53583
150 +381448 53516 .25485 39299 .88854 86798 221 .48572 53490 -11504 88546 .86650 71531
151 «37926 94661 .27523 92992 .88340 13812 222 48442 95725 .13596 63979 86419 97037
152 .37686 87913 .29562 40507 .87782 47745 223 .48291 34834 .15688 37311 .86149 98912
153 .37427 98202 .31600 81617 .87181 04486 224 +48117 50191 .17780 08255 <B5840 40234
154 <37149 B667S -33639 16142 .86534 93063 225 +47921 17826 219871 76544 .85490 78086
155 .36852 10360 435677 43959 .85843 12881 226 L47702 10240 .21963 41927 .B5100 63243
221 .47459 96207 -264055 64176 .84669 39805
228 +4T194 40531 .26146 63083 .B4196 44769
156 .41855 12610 .01016 09759 +90813 63315 229 .46905 03768 .28238 18469 .83681 07531
157 41837 79773 .03048 29035 .90776 13457 230 .46591 41902 .30329 70182 483122 49311
158 «41803 11980 -05080 47585 .90701 09117 231 .46253 05976 -32421 18098 .82519 82481
159 41751 04978 07112 €4928 .90588 41020 232 -45889 41652 +34512 62128 «81872 09796
160 41681 52355 09144 80592 .90437 95176 233 «45499 88715 +36604 02218 «81178 23495
161 441594 45496 <11176 94116 .90249 52799 234 -45083 80491 .38695 38350 .80437 06265
162 +61489 73532 +13209 05051 .90022 90180 235 L44640 43167 .40786 70550 .79647 20029
163 «41367 23265 .15241 12962 .B9757 78535 236 464168 95006 .42877 98884 .788CT 26537
164 .41226 79087 J17273 17436 .B9453 83817
165 41068 22864 .19305 18081 .89110 66485
166 .40891 33826 -21337 14529 .88727 81236 237 251123 39620 .01034 60231 .85937 93085
167 -40695 88406 +23369 C6439 .88304 76686 238 .51101 47256 .03103 BC543 .85901 16024
168 .40481 60083 .25400 93505 .B87840 94998 239 .51057 §9732 .05173 C0408 .85827 51182
169 .40248 19178 .27432 75449 .87335 71457 240 .50991° 71434 .07242 19533 .85716 95092
170 +39995 32625 »29%64 52033 .86788 33977 241 .50933 73898 .09311 37626 .85569 31477
171 -39722 63716 +31496 23058 .86198 02525 242 .50793 55751 .11380 54404 .85384 41153
172 439429 71792 .33527 88370 .85563 83467 243 450661 02637 < 13449 69594 .85161 99908
173 +39116 11900 .35559 47857 .84884 93811 244 +50505 97120 .15518 82929 .94901 78332
174 .38781 34385 .37591 01460 .64160 10332 245 .50328 18565 .17587 94153 284603 41624
246 -50127 42997 .19657 63043 <B4266 49345
247 249903 42926 .21726 09361 .83890 55134
175 «44238 29338 +01011 456408 .89676 92200 248 47655 87148 .23795 12909 «83475 06370
176 «44220 14976 .03034 39011 +89640 22998 249 .49384 40516 .25864 13502 .83019 43776
177 +44183 84050 .05057 30983 +89566 80108 250 <49088 63663 .27933 10979 +82523 00971
178 «44129 32139 .07080 21903 .89456 54527 251 .48768 12693 .3C002 05202 .81985 03931
179 +44056 52580 .09103 11362 .89309 32682 252 .48422 38813 .32070 $6059 .816404 70388
180 -43965 36422 .11125 98957 «89124 96342 253 .4B050 B7923 +34139 B3466 .80781 09120
181 -43855 72372 <13148 84296 .88903 22506 254 .47653 00120 .36208 67370 .80113 19133
182 -43727 46720 .15171 67002 .88643 83251 255 .47228 09147 .38277 417751 -79399 88723
183 -43580 43251 17194 46713 .BB346 45551 256 46775 41734 240346 24623 278639 94372
184 443414 43138 .19217 23088 -88010 71063 257 246294 16844 L42414 98039 -77831 99475
185 +43229 26809 .21239 95806 .87636 15859 258 .45783 44786 .46583 68090 LT6974 52849
186 <43024 63804 .23262 64569 -87222 30126
187 -42800 32597 .25285 29108 .86768 57814
188 +42556 00394 .27307 89181 86274 36221 259 +53341 95587 .01023 20717 .84578 89093
189 +42291 32900 429330 44579 .85738 95521 260 +53319 58465 .03069 62020 .84543 47596
190 +42005 92054 .31352 95127 .85161 58222 261 453274 81427 .05116 £2929 .84472 60152
191 41699 35712 .33375 40687 .84541 38532 262 -53207 58868 -07162 43183 »84366 17851
192 .41371 17300 .35397 81163 .83877 41637 263 453117 82335 .09208 £2525 .86224 07245
193 441020 85394 .37420 16498 .83168 62867 264 .53005 40474 .11255 20706 +B4046 10272
194 +40647 83250 239442 46683 -82413 86730 265 +52870 18954 -13301 £7483 +83832 04140
266 .52712 00378 .15347 92620 .83581 61173
267 .52530 64160 .17394 25894 +83294 48631
195 +46602 58234 .01005 78944 .88471 39485 268 .52325 86392 .19440 57093 .82970 28485
196 46583 68706 .03017 36648 488435 60143 269 .52097 39673 .21486 B6021 .82608 57154
197 46545 87378 .05028 93799 .88363 97126 270 .51844 92918 .23533 12494 .82208 85201
198 46489 09692 .07040 50031 .88256 41746 271 .51568 11129 .25579 36349 +81770 56965
199 46413 28779 .09052 04984 .88112 80900 212 .51266 55136 .27625 57439 .81293 10150
200 -46318 35408 .11063 58308 -87932 96995 213 .50939 81287 .29671 75640 .80775 75340
201 .46204 17939 +13075 69659 487716 67832 274 .50587 41102 .31717 90849 .80217 75444
202 46070 62241 .15086 58706 .87463 66469 275 .50208 80870 .33764 02989 .79618 25051
203 +45917 51602 .17098 05134 .BTLT3 61047 276 .49803 41177 .35810 12007 .78976 29693
204 45744 66622 419109 48643 .86B46 14580 277 .49370 56370 .37856 17880 .78290 86983
208 .45551 85082 .21120 88951 .86480 846709 278 .48909 53930 .39902 20616 77560 758624

581/14/1-6
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TABLE 1A (continued)

282
283
284
285
286
287

289
290

292
293

295
296
297
298
299

301
302

304
305

306

308
309

311
312

314
315

317
318

320
Ja1

323
324
325
326
327
328
329
330

+55548
«55525
«55480
«55411
«55320
»55206
55068
254907
56722
54514
«54282
«54025
«53F43
«53436
«53104
«52746
252361
«51949
+51509
+51040
50543
+50015
49456
+48864

«57741
57718
57672
«57602
51509
+57393
57253
57090
«56903
«56691
+56455
56194
+55908
55597
+55260
54896
+54506
+54088
53642
53167
52662
52127
+51561
50962
+50330

59876
+59851
+59800
259724
259623
+59495
59362
«59163
+58958
«58726
+58468
.58182
+57869
-57527
57157
56758
«56330
«+55871
55381
«5648538
«54303

73439
96027
30419
95035
57457
14382
51547
51641
94186
55410
08080
21314
60365
86365
56031
21330
29086
20535
30806
88320
14105
20979
12618
82451

68552
55321
26096
75333
94675
72899
95850
46347
04080
45472
43531
67664
83464
52469
31879
74229
27018
32278
26083
37972
30295
97467
64974
88534
52678

T4ll6
42667
76515
69428
11559
89983
88308
86634
61410
85283
26899
50685
16580
T9740
90183
92383
24806
19366
00804
85960
82933

«01011
« 03035
05058
07082
09105
.11128
«13152
15175
.17199
19222
«21245
«23269
25292
«27315
+29338
«31361
»33385
« 35408
«37431
« 39454
41477
43500
45523
« 47546

01000
03000
<05000
.07000
.09001
.11001
.13001
+15002
.17002
.19002
.21602
.23002
.25002
.27003
.29003
+31003
33003
35003
.37003
39003
.41003
43003
.45003
«47003
49002

.01027
.03082
«05137
«07192
«09247
- 11302
«13357
+15412
«17447
«19522
.21577
23632
«25686
«27741
«29796
«31851
+33906
+35960
+38015
+40070
%2125

72035
15990
59595
©2620
44839
86030
25976
64471
01314
36318
69306
00117
28601
54628
78085
98877
16933
32201
44657
54302
61164
65303
66810
65810

14437
43209
71671
99619
26853
53174
78391
02320
24783
45613
64653
81755
96789
09635
20190
28368
34101
37342
38064
36262
31958
25196
16053
04631
91068

49870
49515
48877
47766
46000
43398
39784
34991
28859
21234
11977
00958
B8060
73180
56230
37140
15859
92353
66611
38644
08490

83146
83112
83044
82941
.82805
82634
82428
82187
81912
81600
«81253
«80869
+80448
79989
79493
+T8957
+78381
<1765
<T7108
- T6407
75663
~ 4874
74038
«13154

-81638
+81606
+81540
+Bl442
81311
81147
+.80350
«B0OT19
« 80454
«80156
79822
19454
79050
78611
+ 78135
<77621
. 77070
- 76480
+75850
+ 75179
<T4467
73711
12911
12065
<TLIT2

. 8008S
+80051
«79984
-79882
79746
79576
79372
-79133
.78859
« 78549
+ 78204
.77822
« 77403
«T6947
«T64653
. 75920
« 15347
«T4T34
« 74079
«.73381
« 72640

el
382
383

«51732

61917
«61889
61834
«61752
«61642
+61503
61337
61143
60920
60668
60387
«60076
59735
«59364
«58961
«58527
«58060
57560
+57025%
+56456
+55850
+55207
56525
+53803
+53039

63909
+63882

«63827
+63745
63634
.63497
.63331
.63136
.62914
462663
£62382
62072
61732
.61362
.60960
460527
60062
+59564
-59032
.58465
57862
57222
«56544
.55827
55068
+54266

«65892
+65864
+65810
+65727
265617
+65480
+65314
+65121
«64898
«64648
64368
+64059
+63720
+63351
62951
62520
«62056
61560

%5279
96632
95692
35141
03943
87266
66382
18536
16785
29806
21663
51535
73402
35676
80769
448602
56027
36163
97621
43601
66840
48373
56078
42941
45018

97416
52735

59850
11691
97596
03243
10544
97545
38257
02480
55596
58307
86350
30149
94425
97736
71954
41648
23382
24892
44131
68151
71788
16124
46645
L0861

34696
95507
13724
82518
91586
27096
71590
03873
90875
27482
56335
47599
58688
41949
44300
06807
64198
44304

+50343

01052
«03158
05264
« 07370
09476
+11582
13688
15793
«17899
+20005
22111
24217
26322
28428
+30534
«32639
34745
. 36851
« 38956
«41062
43168
«45273
«47379
«49484
.651590

01035
03107

205178
07249
09321
»11392
» 13463
«15534
. 17606
19677
«21748
.23820
+25891
279862
+30033
+ 32104
«34176
«36247
.38318
.40389
42460
«4453%
246602
«48673
50744
+ 52815

01018
«03056
.05094
07132
.09170
.11208
13246
+15284
«17322
19360
21398
«23436
< 25474
27511
«29549
«31587
+33625
+35663

93258
79685
65852
51586
36717
21081
04518
86874
68004
41772
26049
02722
77687
50856
22156
91531
58940
24367
87814
49306
08894
66657
22701
77166
30225

67132
01317

35270
68837
01865
34209
65724
96273
25726
53960
BC859
063219
30246
52558
73186
92077
09192
24508
3e022
49751
597313
68028
74723
79931
83795
86491

98060
94112
89955
85454
80472
T4879
68545
61348
53170
43900
33435
21679
C8546
93961
17861
60192
“C917
20012

«69204

78518
78483
+T8413
-78309
+78169
« 77994
277783
« 77537
+ 77254
+ 76935
« 76579
76186
275754
75284
JT4TTH
274223
« 73632
-12998
72321
«T1599
70832
«70017
«69153
+68238
67270

+ 76905
«T6872

76806
«T6707
«T6574
« 76409
+76209
15976
75708
« 75406
75069
76696
«T4288
«73842
+73360
« 72839
+ 72280
+T1681
71041
»70359
+69635
»6BB865
+68050
«67187
66275
65311

«75214
.75182
75120
75026
»74901
«T4T44
74555
« 74334
+7408)
+73795
< 13476
«73126
12737
-T2316
-71860
71368
70839
+T0274

28050
463868
T8370
14756
41499
39750
85704
50444
99727
93745
86829
27105
56091
08230
10345
8L 014
29834
56580
50222
817717
32974
34682
25063
17376
03373

41326
42138

39513
24926
85518
04015
58613
22828
65321
49679
34153
71359
07922
84068
33143
81067
45699
36099
51679
81210
aleTe
76924
56084
710
37570
45014

09636
85244
35566
49788
17127
21160
43717
58754
38197
48742
52236
05403
59535
60133
46485
51192
99608
09202
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TABLE IIA (continued)

k Py qy Iy

425 «61030 67414 «37700 97469 «+ 69669 88819
426 «604656 45522 +39738 73297 « 69026 37826
427 «59866 81460 «41776 47523 « 68342 45113
428 «59230 67688 »43814 20194 «67616 81946
429 «58556 86106 45851 91380 + 66848 30606
430 57844 04671 ~47889 €£1171 +66035 22810
431 «57090 77752 +49927 29687 65175 97832
432 «56295 43189 «51964 97071 -.64268 70286
433 .55456 20172 «54002 63501 «63311 33471
434 67861 10131 . 01002 78125 273442 33947
435 67833 78226 .03008 34312 +73413 40379
436 67779 11128 05013 90313 73354 29674
437 67697 02236 . 07019 46007 «73265 54677
438 +67587 41604 .09025 01271 + 73147 04600
439 67450 15672 - 11030 55989 « 72998 649586
440 67285 08189 « 13036 10046 . 72820 17468
441 67091 98103 «15041 63330 +72611 39958
442 «66870 61433 «17047 15737 «72372 06205
443 «66620 70112 19052 67166 .72101 85770
444 66341 92002 «21058 17524 «T1800 43804
445 66033 90675 «23063 66724 +T146T 40804
446 +65696 25160 « 25069 14688 +71102 32345
447 «65328 49654 +2T074 61347 70704 68758
448 «64930 13178 « 29080 06640 +T0273 94770
449 «64500 59197 .31085 50519 69809 49078
450 «64039 25165 « 33090 92946 +59310 63869
451 =63545 42017 «35096 33897 +68776 64260
452 63018 33571 +37101 73359 68206 67658
453 «62457 15849 »39107 11336 «567599 B30Q017
454 «61860 96282 +41112 47846 66955 09984
455 «61228 72794 «43117 B2926 66271 37900
456 «60559 32732 +45123 16630 + 65547 44647
457 .59851 51613 «47128 49032 64781 95287
458 «59103 91660 +49133 80228 «63973 40476
459 «58315 00061 .51139 10338 +63120 14583
460 .57483 06913 +53144 39509 +62220 33457
461 56606 22759 «55149 67915 61271 91761
462 »69778 98676 01021 62960 .71622 96186
463 269749 Bl4a40 .0306% 78824 271593 04668
464 69691 43317 05109 64517 .71533 17879
465 «69603 T6986 07153 49929 +Tl443 28289
466 +69486 T1403 « 09197 34947 «T1323 24541
467 «69340 11737 «11241 19465 +71172 91385
468 63163 79271 «13285 03378 . 70992 09572
469 .68957 51281 «15328 86585 70780 55735
470 68721 00884 »17372 68990 .70538 02230
471 .68453 96858 »19416 50504 70264 16952
472 68156 03427 »21460 31041 +69958 63113
473 67826 80009 +23504 10524 69620 98984
4£T4 «67465 80919 .25547 88886 «69250 77592
475 «67072 55034 «2759) 66064 68847 46367
476 60646 45391 «29635 42008 +6841C 46745
4717 «566186 88741 «31679 16677 «67939 13693
478 «65693 15018 «33722 90043 +67432 75173
479 65164 46735 « 35766 62087 266890 51522
480 64599 98287 + 37810 328cC8 266311 54729
481 «63998 75136 «39854 02215 .65694 87607
482 «63359 72876 «41897 70336 65039 42823
483 .652681 76129 «4394) 37214 64344 OL 772
484 61963 57267 « 45985 02914 .63607 33258
485 61203 74902 +48028 67516 62827 91950
486 60400 72109 .50072 31128 «62004 16547
487 «59552 74308 .52115 93879 ~61134 27611
488 +9B657 86740 «54159 55927 5602186 24973
489 «ST713 91429 «56203 17462 «59247 864604
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table becomes a useful guide to others who wish to produce a distribution with a
different value of N. (b) If one does not wish to go to the trouble to design his own
distribution and is content to use our work as a computational aid, then the
results of Table ITA can be transcribed onto IBM cards and used directly.

The first column of Table IA identifies the wedge planes of Fig. 1b. The strips
cut out by these planes on the unit sphere are labeled by £; thus £ in Table IA is
shown between the upper wedge plane label i + 1 and the lower plane label i. The
elements in each strip are numbered consecutively from left to right as indicated
in Fig. 1b. Strip £ = 1 contains elements « = 1, 2; strip £ = 2 contains k = 3,4, 5;
strip £ = 3 contains « = 6, 7, 8, 9, 10; etc. Integer n, counts the number of elements
in each strip while n, dw is just the area on a unit sphere subtended by the entire
strip labeled ¢. The two cos 6° values corresponding to each strip £ are located in
Table 1A above and below each strip £ as shown. As in Eq. (3.6) and elsewhere
we use the convention that the lower plane defining strip ¢ be labeled by 6,° while
the upper carries the label 7, , such that £ = i 4 1. Table IA shows this con-
vention at a glance. Note that we show only five significant figures in n, dw, in
the cos 6,° values, and in 69,; — 6,0. This is sufficient for tabular purposes. Recall,
however, that in the text we have stated that both#n, dwand cos8,*have to be known
in the calculations to 14 significant figures in order to achieve the final accuracy of
only 10 decimals in the p, , g, , r. of Table IIA. Note that « labels also the polar
coordinate angle ¢, corresponding to the right-hand edge (see Fig. 1b) of each
surface element.

The elemental solid angle cones formed by the bounding planes defined in
Section III and by the labels of Table IA form a solid figure when closed by a unit
sphere. The vector passing through the centroid of an elemental cone is labeled by
# just as « also labels the right edge plane and ¢, of that element. The direction
cosines of this centroid vector are p,, ¢., r. according to their definitions in
Egs. (4.9) to (4.12). These direction cosines along with the identifying label « are
given in Table IIA.
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